Supplementary Information Title: Excess HB-EGF, which promotes VEGF signaling, leads to hydrocephalus Joon W. Shim,^{a,c,1*} Johanna Sandlund,^{b,2,3} Mustafa Q. Hameed,^{a,f} Bonnie Blazer-Yost,^c Feng C. Zhou,^d Michael Klagsbrun,^{b,e} Joseph R. Madsen^a ^aDepartment of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA ^bVascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA ^cDepartment of Biology, Indiana University Purdue University, Indianapolis, IN 46202, USA ^dDepartment of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA ^eDepartment of Surgery and Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA ^fDepartment of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA ## Present address ## Supplementary Table S1 list of primers | Gene name | GenBank # | Reference
Position | Band
size | Sequence | |---------------------------|-------------|-----------------------|--------------|--| | Human HB-EGF | NM_001945 | 516 | 121 | * | | Mouse HB-EGF (exon3) | NM_010415 | 513-690 | 324 | ctttctcctccaagccacaa
tgagaagtcccacgatgaca | | Mouse HB-EGF
(exon1-4) | NM_010415 | 46-603 | 527 | accttcaagggctggagtg
ttcttccctaacccctttcc | | Mouse HB-EGF
(exon6) | NM_010415 | 2027 | 89 | * | | Mouse VEGF | NM_009505.3 | 1839-1857 | 191 | * | | Mouse GAPDH | NM_008084.2 | 962-983 | 128 | * | ^{*} Refer to Qiagen/SuperArray (Bethesda, MD) ¹Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA ²Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive L235, Stanford, CA 94305, USA ³Clinical Microbiology Laboratory, Stanford University Medical Center, 3375 Hillview Avenue Palo, Alto, CA 94304, USA ## Supplementary Table S2 Summary of growth factor infusions | Craig
et al
(1996) | Doetsch
et al
(2002) | Kuhn
et al
(1997) | Kuhn
et al
(1997) | Johanson
et al
(1999) | Harrigan
et al
(2002) | Warner-
Schmidt &
Duman
(2007) | Current
study | |--------------------------|--|-------------------------|-------------------------|-----------------------------|-----------------------------|---|--------------------------------| | EGF | EGF | EGF | FGF-2 | FGF-2 | VEGF ₁₆₅ | VEGF ₁₆₄ | HB-EGF;
VEGF ₁₆₅ | | Bind to heparin? | | | | | | | | | No | No | No | Yes | Yes | Yes | Yes | Yes | | [µg/ml]
33 | | [µg/ml]
30 | [µg/ml]
30 | [μg/ml]
1
0.5
0.25 | [μg/ml]
25
5
1 | [μg/ml]
10 | [µg/ml]
10;
25 | | mouse | rat | Flow rate
0.5 µl/hr | 0.5 μl/hr | 0.5 μl/hr | 0.5 μl/hr | 0.5 µl/hr | 1.0 μl/hr | 1.0 µl/hr | 0.5 μl/hr | | [ng/d]
400 | [ng/d]
400 | [ng/d]
360 | [ng/d]
360 | [ng/d]
12
6
3 | [ng/d]
600
120
24 | [ng/d]
240 | [ng/d]
120;
300 | | How long?
6 d | 6 d ON/1 d
OFF
6 d ON/2 d
OFF | 14 d | 14 d | 2, 3, 5 d
10-12 d | 7 d | 7 d ON/7 d
OFF
7 d
14 d | 14 d;
7 d ON/7 d
OFF | d denotes day; ON means pump is infusing infusate; OFF means pump is not infusing. Supplementary Figure S1 A diagram exhibiting applied plasmid and transgene designed to express human HB-EGF (exon 3) Supplementary Figure S2 Agarose gel showing RT-PCR result of each genotype with three primers sensing exon 1-4 (527 bp), exon 3 transcript of mouse HB-EGF (324 bp), and exon 3 transcript of human HB-EGF (121 bp) with GAPDH as housekeeping gene (128 bp). W.t., het, and hom denote wildtype, heterozygous, and homozygous mutant, respectively. mHB-EGF and hHB-EGF denote mouse and human HB-EGF, respectively. bp denotes base-pair. Supplementary Figure S3 Agarose gels displaying RT-PCR of the forebrain and midbrain region in the wild type animals and mice expressing human HB-EGF homozygous allele. (a) mRNA expression of human and mouse HB-EGF, VEGF, and GAPDH in the homozygote and wild type control animals (cropped from original images shown in c-f (b) Full-length gel showing human HB-EGF mRNA expression in the homozygote (c) Full-length gel displaying mouse HB-EGF expression in an off-target region (exon 6) (d) Full-length gel exhibiting elevated mouse VEGF mRNA level in the homozygote as compared to the wild type forebrain (e) GAPDH as internal reference. n=2/genotype (pair #1: lane 1-4, pair #2: lane 5-8). Dotted rectangles represent the cropped bands shown in a. Raw images visualized with Ethidium bromide in b-e Supplementary Figure S4 The representative magnetic resonance image (MRI) of the mouse carrying human HB-EGF heterozygous (left) and homozygous (right) allele in coronal orientation at postnatal day 60 (P60): relatively caudal to rostral scan from the top left to the bottom. Note that the HB-EGF homozygote displayed the accumulation of cerebrospinal fluid in the subarachnoid space (arrowheads) and the cerebral ventricular system. Scale bar, 5 mm. Supplementary Figure S5 (a) Localization of the transgene reporter, β -gal (green), in the HB-EGF heterozygous brain at P1, P5 (a'"), and P7 (a""), respectively. Arrow indicates β -gal stream found in the vicinity of the lateral ventricle. This is magnified in B'. Adjacent sagittal sections displaying β -gal localization in the lateral ventricle (LV) and in a region dorsal and tangential to the LV. I-bar represents the distance between the LV and the tangential stream of the β -gal localization (a"). OB denotes olfactory bulb. Double arrows indicate a stream of tangential β -gal following the RMS (a'-a"). (b) Distribution of the β -gal in the HB-EGF heterozygous (left) and homozygous (right) brain at P21 in the ventrolateral direction reported previously ²⁰. Note that a dense ventral β -gal stream (arrow) is lost in the homozygote. Scale bars, 1 mm (a & a""); 50 μ m (a', a", a", and b). Supplementary Figure S6 Effect of intraventricular VEGF infusions on ependyma: (a) Micrographs demonstrating lateral walls of the lateral ventricle in the rostral SVZ of adult rats infused with vehicle (left) and VEGF at 25 μ g/ml with the rate of 0.5 μ l/hr for 7 days stained with β catenin (β cat) and acetylated α tubulin (AceT). (b) Micrographs displaying the size of basolateral β cat span indicative of altered intracellular junction on the ventricular surface: an apparent increase of width between one catenin immunofluorescence to another in an orientation along the ventricular surface is evident in the VEGF infused ependyma (c) A bar graph with scattered data exhibiting intracellular β catenin width in the vehicle (6.22±0.2 μ m) and VEGF infused brain (8.17±0.2 μ m). Asterisk denotes a statistical significance by Mann-Whitney U test at p<0.05 (n=18 cells on the ventricular surface from two animals per each infusion group). Scale bars, 10 μ m (a-b). Supplementary Figure S7 Effect of VEGF receptor or ligand inhibition on SVZ neuroblast in the RMS: (a) Immunofluorescence micrographs displaying PSA-NCAM+ neuroblast adjacent to VEGFR2+ cells residing in the ependyma and subependyma of the rats treated with VEGF (left), VEGF with semaxanib (middle), and VEGF and bevacizumab (right). Arrows indicate an orientation of PSA-NCAM+ chains of SVZ neuroblast. Dashed line indicates ventricular surface. (a') Cartoon of the corresponding region visualized in A. (b) A bar graph showing the PSA-NCAM+ immunofluorescence in the region shown in A. Single and double asterisk denote a statistical significance at p<0.05 and p<0.01, respectively, by Tukey's post-hoc test after ANOVA (P < 0.05); scale bar, 20 µm (a) Supplementary Figure S8 Distribution of radial glia and young neurons in the SVZ and cerebral cortex of TMEM67 mutant rats with hydrocephalus: (a) Sagittal sections displaying cells reported to migrate tangentially from subventricular zone (SVZ) of the lateral ventricle to the OB. A curved arrow indicate the trajectory of RMS. Solid arrows indicate a reduced H&E stain the RMS of the TMEM67-/- mutant brain as compared to the wild type. (b) Confocal micrographs exhibiting an enhanced radial migration of vimentin+ radial glia (top) and DCX+ neuroblast in an radial orientation of the TMEM67-/- mutant brain as compared to the wild type. Dashed arrows indicate the orientation from the lateral ventricular surface towards the cortical plate. Scale bars, 500 μ m (a) and 50 μ m (b)